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Dispersion of passive tracers in a velocity field with non-d-correlated noise

P. Castiglione and A. Crisanti
Dipartimento di Fisica, Universita` di Roma ‘‘La Sapienza’’ and INFM sezione Roma I, Piazzale Aldo Moro 2, 00185 Roma, Ital

~Received 6 July 1998!

The diffusive properties in velocity fields whose small scales are parameterized by non-d-correlated noise is
investigated using multiscale technique. The analytical expression of the eddy diffusivity tensor is found for a
two-dimensional~2D! steady shear flow and it is an increasing function of the characteristic noise decorrelation
time t. In order to study a generic flowv, a small-t expansion is performed and the first correctionO(t) to
the effective diffusion coefficients is evaluated. This is done using two different approaches and it results that
at the ordert the problem with a colored noise is equivalent to thed-correlated case provided by a renormal-

ization of the velocity fieldv°ṽ depending ont. Two examples of 2D closed-streamlines velocity field are
considered and in both the cases an enhancement of the diffusion is found.@S1063-651X~99!04204-X#

PACS number~s!: 47.52.1j
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I. INTRODUCTION

The problem of diffusion in a given velocity field has bo
theoretical and practical relevance in many different fields
science and engineering as, e.g., transport processe
chemical engineering and combustion studies@1#. The trac-
ers transport, in particular the evolution of their concent
tion, plays an important role in many aspects of geophys
For the oceanic flows, satellite data indicate that the me
cale features, like eddies and cold filaments, advect temp
ture and nutrients over spatial and temporal scales lon
than those of the geostrophic turbulence. The diffusion
hancement by a given velocity field has attracted a lot
works in the last years. In particular the role of the veloc
field properties has been largely investigated while the
fects of small-scale parameterization are not understood

In this paper we will focus on the effects of a finite noi
correlation time. This problem is relevant in studying t
transport in the ocean since in this system the noise t
comes from unresolved velocity scales which are correla
in time.

In Sec. II, by using the multiscale technique, we study
diffusion properties of the model proposed in Ref.@2# for
transport in the upper mesoscale ocean. The transport is
scribed by a Langevin equation with a Gaussian colo
noise in time.

The aim is to understand whether a finite noise correla
time t enhances or depresses the dispersion process
given velocity fieldv(x,t) with respect to thed-correlated
case (t50).

Exploiting the scale separation in the dynamics we der
using the multiscale technique@3#, an effective diffusive
equation for the macrodynamics, the calculation of the eff
tive diffusivity second-order tensor is reduced to the solut
of one auxiliary partial differential equation@4–6#.

In Sec. III we consider a shear flow, in this case the d
fusion coefficient increases witht. The solution of the aux-
iliary equation is, in general, quite difficult, therefore, to i
vestigate the role of the finitet in Sec. IV we perform a
small-t expansion. An alternative method is presented in
Appendix A.
PRE 591063-651X/99/59~4!/3926~9!/$15.00
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In Sec. V we study the case of two closed-streamlin
fields that mimics the transport in the Rayleigh-Be´nard sys-
tem: the quasi-two-dimensional flow studied by Shraiman
@7# and theAB flow. In both the cases the presence of a sm
correlation time enhances the diffusion process.

Conclusions are reserved for the final Sec. VI.

II. EFFECTIVE DIFFUSION EQUATION
FOR GAUSSIAN COLORED NOISE

We consider large-scale and long-time dynamics of
model proposed in@8# and already studied in@2# for the
transport of a fluid particle in the upper mesoscale ocean

d

dt
x5v~x,t !1s~ t !, ~1!

where v is a d-dimensional incompressible velocity fiel
(“•v50), for simplicity, periodic both in space and in tim
ands is a Gaussian random variable of zero mean and c
relation function

^si~ t !sj~ t8!&5
s2

t
d i j e

2[ ~ ut2t8u!/t] . ~2!

The termv(x,t) represents the part of the velocity field th
one is able to resolve, i.e., the larger scale mean fl
whereass(t) represents the part of the velocity field contai
ing the subgridscale flow processes, e.g. the small-scale
bulence. The plausibility of such a description is discusse
@9–11#. In the limit t→0, resultinge2ut2t8u/t/t→d(t2t8),
~2! reproduces the widely studiedd-correlated case

^si~ t !sj~ t8!&5s2d i j d~ t2t8!, ~3!

the diffusive properties of which we would like to compa
with the t-correlated noise case.

To study the dispersion of tracers evolving according
Eqs. ~1! and ~2! on large scales and long times we use t
multiscale technique. This is a powerful mathematic
method, also known as homogenization, for studying tra
port processes on time and spatial scales much larger
3926 ©1999 The American Physical Society
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PRE 59 3927DISPERSION OF PASSIVE TRACERS IN A VELOCITY . . .
those of the velocity fieldv. It has been already applied t
the d-correlated case@3# and it has been shown that the m
tion on large time and spatial scales is diffusive and it
described by an effective diffusion tensor which takes i
account the effects of the advecting velocity on the bare
fusion coefficients2.

To apply this method to the case of Gaussian colo
noise, we first write Eqs.~1! and ~2! into a Markovian pro-
cess by enlarging the state space considerings(t) as a vari-
able evolving according to the Langevin equation:

d

dt
s52

1

t
s1w~ t !, ~4!

where now the noisew(t) is a white noise with correlation
functions

^wi~ t !wj~ t8!&52S s

t D 2

d i j d~ t2t8!. ~5!

We have now a two-variable (x,s) Markovian process whos
associated Fokker-Planck equation can be easily obtai
Indeed, introducing

Y5S x

sD ; W5S w

wD ; V5S v1s

2
1

t
sD ; Â5S 0 0

0 1D
~6!

Eqs.~1! and ~4! become

d

dt
Y5V~Y,t !1Â•W~ t !. ~7!

The associated Fokker-Planck equation is

] tQ5S s

t D 2

­ss
2 Q2~v1s!•­xQ1

1

t
­s•~sQ!, ~8!

whereQ5Q(x,s,t) denotes the probability density.
The doubling of the space dimension is the price to p

for having a Fokker-Planck equation. In Appendix A we d
cuss a different approach to the problem that does not do
the dimension of the space, but leads in general to a n
Markovian master equation.

We can now apply the multiscale technique. Followi
@6# in addition to thefast variablesx and t we introduce the
slow variables defined asX5ex and T5e2t wheree!1 is
the parameter controlling the separation between the s
scales related to the velocity fieldv and the large scale re
lated to theQ variation. The two sets of variables are co
sidered to be independent and so we have to make the
stitution

­x°­x1e­X; ] t°] t1e2]T . ~9!

The solution of the Fokker-Planck equation~8! is sought as a
perturbative series

Q~x,t,X,T,s!5Q~0!1eQ~1!1e2Q~2!1•••, ~10!
s
o
f-

d

d.

y
-
le
n-

all

b-

where the functionsQ (n) depend on both fast and slow var
ables. By inserting Eqs.~9! and ~10! into the Fokker-Planck
equation~8!, equating terms of equal powers ine and choos-
ing the solutions that have the same periodicities as the
locity field, we obtain a hierarchy of equations the first thr
of which are

DQ~0!50, ~11!

DQ~1!52~v1s!•­XQ~0!, ~12!

DQ~2!52~v1s!•­XQ~1!2]TQ~0!, ~13!

where the operatorD is defined as

D5] t1~v1s!•­x2
1

t
­s~s!2S s

t D 2

­ss
2 . ~14!

In order to solve Eq.~11! we make use of scale separatio
and we write the solutionQ (0) as the sum of two terms
^Q (0)&(X,T,s) depending on theslow variables and
Q̃ (0)(x,t,s) depending on thefast variables. Here and in the
following the ^•& indicates the average over thefast vari-
ables.

Equation~11! then splits into the two equations

DQ̃~0!50, ~15!

S s

t D 2

­ss
2^Q~0!&1

1

t
­s~ ŝ Q~0!& !50. ~16!

One can show@6# that the solutionQ̃ (0) will relax to a con-
stant with respect to fast variables, so we can simply tak

Q~0!~x,t,X,T,s!5^Q~0!&~X,T,s! ~17!

and write the solution of Eq.~16! as

^Q~0!&5Q~X,T!P~s! ~18!

whereP(s) is defined as

P~s!5
e2ts2/2s2

~2ps2/t!d/2
~19!

with d the dimension of thex space.
By using Eq.~18! we see that Eq.~12! can be written as

DQ~1!5f~x,t,s!•G~X,T! ~20!

with

f~x,t,s!52~v1s!P~s!, G~X,T!5­XQ~X,T! ~21!

with solution

Q~1!~x,t,X,T,s!5x~x,t,s!•G~X,T!. ~22!

The vector fieldx is called the auxiliary field and it solve
the auxiliary equation

Dx5f. ~23!
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3928 PRE 59P. CASTIGLIONE AND A. CRISANTI
Finally by averaging Eq.~13! over the fast variables,̂•&,
and integrating overs, (• )̄ , we obtain

­X^~v1s!Q~1!&52]T^Q~0!&52]TQ~X,T!, ~24!

which, using Eq.~22!, becomes

]TQ52^~v j1sj !x i&]XiXj

2 Q5Di j
E]XiXj

2 Q. ~25!

This is the diffusion equation describing the large-scale
namics, i.e., the dynamics in the slow variables. The eff
tive eddy diffusivity tensorDi j

E is given by

Di j
E52 1

2 @^~v i1si !x j&1^~v j1sj !x i&#. ~26!

From the auxiliary equation~23! one can show that theDi j
E is

positive definite. Indeed, if we consider thei th and thej th
component of Eq.~23!, multiply by x j andx i , respectively,
sum the two terms and average the result over the perio
ties,^•&, and integrate over the random variables we end up
with

Di j
E5S s

t D 2E dds]s^x i&]s^x j&P~s!>0. ~27!

This result can be extended to non-periodic velocity fi
following the prescriptions in@12#.

III. A SOLVABLE CASE: THE STATIONARY SHEAR
FLOW

The resolution of the auxiliary field equation for a gene
v is not an easy task. Therefore not trivial solvable cases
useful to understand the properties of the solution. In part
lar the auxiliary equation can be resolved for parallel flow
which in two dimensions have the form

v~x,y!5„v~y!,0…, ~28!

where v(y) is an arbitrary function ofy. Note that these
flows automatically satisfy“•v50. To evaluate the effec
tive diffusion coefficients we first write the solution of th
auxiliary equation as

x i~x,t,s,x8,t8,s8!52E dt8dx8ds8G~x,t,s,x8,t8,s8!

3„v i~x8!1si8…P~s8! ~29!

whereG is the Green function of the operatorD:

DG5d~x2x8!d~ t2t8!d~s2s8!. ~30!

Inserting Eq.~29! into Eq. ~26! we have

Di j
E52E dtdxdsdt8dx8ds8@v i~x!1si #G~x,t,s,x8,t8,s8!

3@v j~x8!1sj8#P~s8!. ~31!

Now we note that the Green functionG can be written as

G5^d„x2x~ t;x8,t8!…d„s2s~ t;s8,t8!…&w , ~32!
-
-

i-

re
-
,

where the average is over the realizations of the white no
w, x(t;x8,t8) and s(t;s8,t8) are the solutions of Eqs.~1!,
~4!, and ~28! with initial condition x85x(t8;x8,t8) and s8
5s(t8;s8,t8). For the velocity field~28! the solutions of Eqs.
~1! and ~4! can be written as

x~ t !5x81E
t8

t

dt1v„y~ t1!…1E
t8

t

dt1s1~ t1!,

y~ t !5y81E
t8

t

dt1s2~ t1!, ~33!

s~ t !5s8e2~ t2t8!/t1E
t8

t

dt1w~ t1!e2~ t2t1!/t.

Inserting Eqs. ~32! and ~33! into Eq. ~31!, after some
straightforward algebra one obtains

D11
E 5s21

1

2pE dkuv̂~k!u2 lim
t→`

E
0

t

dt8

3exp$2s2k2@~ t2t8!2t~12e2[ ~ t2t8!/t] !#%

~34!

and

D12
E 50, D22

E 5s2, ~35!

wherev̂(k) is the Fourier transform ofv(y). The same result
can be obtained directly from the definition

Di j
E5 lim

t→`

1

2t
^@xi~ t !2^xi&#@xj~ t !2^xj&#& ~36!

using Eq.~33!. Now, because of the inequality

exp@s2k2t~12e2[ ~ t2t8!/t] !#>1 ~37!

one has

D11
E ~t!>s21

1

2pE dkuv̂~k!u2 lim
t→`

E
0

t

dt8e2s2k2~ t2t8!

5s21
1

2pE dk
uv̂~k!u2

s2k2
5D11

E ~0!. ~38!

Therefore for a stationary parallel flow a colored noise p
duces an enhancement of the dispersion. Similar equat
can be obtained for a time-dependent shear flow. Howe
in this case it is not simple to see the sign of the correcti
The results will be reported elsewhere. It is trivial to sho
that the results in this section hold also for a 3d shear flow:

v~x,y,z!5„v~y,z!,0,0…. ~39!

IV. EDDY DIFFUSIVITY FOR SHORT NOISE
CORRELATION TIME

By using multiscale technique, the calculation of the ed
diffusivities has been reduced to the solution of the auxilia
equation~23!. Numerical methods are generally needed
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solve it but to do so we have to work in a 2d-dimensional
space. In general, this is not feasible, so, to get more ins
the genericv case we study the smallt case and expand th
auxiliary fieldx in a power series oft. A typical time of the
physical system that can be compared tot is ts
5l/^v2&1/2, i.e., the average time it takes a particle to tra
a characteristic lengthl.

Taking

a i5Atsi ,

x i5
t

2ps2(k50

`

x i
~k!~x,a,t !tk/2

we obtain the following expression for the eddy diffusivi
tensor:

Di j
E52

1

2

1

2ps2F(k
tk/2~^v i x̄ j

~k!&1^v j x̄ i
~k!& !1t@~k21!/2#

3~^a ix j
~k!&1^a jx i

~k!& !G ~40!

and for the auxiliary equation

(
k

@tk/2~] t1v•­x!1t [ ~k21!/2]a•­x2t [ ~k22!/2]

3„­a~a!2s2]aa
2
…#x i

~k!52S v i1
a i

At
D e2~a2/2s2!.

~41!

From the expression~40! we see that in order to determin
the correction of ordert to Di j

E , we need the quantitie

^x i
(0)&, x ī

(0), ^x i
(1)&, x ī

(1), ^x i
(2)&, x ī

(2), and ^x i
(3)&. The

fields x i
(k) obey the equations

Oax i
~0!50, ~42!

Oax i
~1!5a•­xx i

~0!1a ie
2~a2/2s2!, ~43!

Oax i
~2!5~] t1v•­x!x i

~0!1a•­xx i
~1!1v ie

2~a2/2s2!,
~44!

Oax i
~h!5~] t1v•­x!x i

~h22!1a•­xx i
~h21! , h>3,

~45!

where the operatorOa is defined as

Oa5­a•~a!2s2]aa
2 . ~46!

The solutions of Eqs.~42!, ~43!, and ~44! can be written in
the form

x i
~0!5x̃ i

~0!~x,t !e2~a2/2s2!, ~47!

x i
~1!5~a1ia11a2ia21a3i !e

2~a2/2s2!, ~48!
ht

l

x i
~2!5~b1ia1

21b2ia2
21b3ia1a21b4ia1

1b5ia21b6i !e
2~a2/2s2!. ~49!

The coefficientsai j andbi j are functions ofx andt while for
the fieldx i

(3)

^x i
~3!&5c~x,t !e2~a2/2s2!. ~50!

By inserting expressions~47!, ~48!, and~49! into Eqs.~42!,
~43!, ~44!, and~45! we can determine the coefficientsai j for
i 51,2 andbi j for i 51, . . . ,5 andthen by integrating overa
the equations forx j

(2) , x j
(3) , andx j

(4) , respectively, we fi-
nally have the equations for the remaining functio
x̃ i

(0) , a3i , andb6i ,

Oxtx̃ i
~0!52v i , ~51!

Oxta3i50, ~52!

Oxtb6i5
3
2 s2@]2v i1]2v j] j x̃ i

~0!#12s2] jvm] jm
2 x̃ i

~0! ,
~53!

where

Oxt5] t1v•­2s2]2. ~54!

The Di j
E coefficients at the first order int read

Di j
E5s2d i j 2

1
2 ~^v i x̃ j

~0!&1^v j x̃ i
~0!& !2

t

2Fs2

2
~^v i]

2x̃ j
~0!&

1^v j]
2x̃ i

~0!& !1^v ib6 j&1^v jb6i&G . ~55!

We note that instead of the 2d-dimensional equation~26! we
have now a system of twod-dimensional equations~51! and
~53! without the random variables. Of course this is numeri-
cally much more convenient.

We note that by defining new velocity and auxiliary field
as

ṽ5v2
s2t

2
]2v, ~56!

x̃5x̃~0!1t~b61s2]2x̃~0!! ~57!

and negletting terms ofO(t2) equations~51!, ~53!, and~55!
can be written as

~] t1ṽ­2s2]2!x̃ i5 ṽ i ~58!

and

Di j
E5s2d i j 2

1
2 ~^ṽ i x̃ j&1^ṽ j x̃ i&!, ~59!

formally equivalent to the Gaussian white noise result.
In Appendix A we use a different method to obtain th

expression of the eddy diffusivity tensor for smallt up to
O(t2). By starting from the Master equation associated w
the Langevin equation~1! and using a smallt expansion we
derive the Fokker-Planck equation
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] tQ~x,t !52] i@v i~x,t !Q~x,t !#1] i j
2 @Di j ~x,t !Q~x,t !#

~60!

with

Di j ~x,t !5s2Fd i j 1
t

2
@] iv j~x,t !1] jv i~x,t !#G . ~61!

Now, by applying multiscale technique to Eq.~60! we end
up with the following equations:

Oxtwi
~0!52v i , ~62!

Oxtwi
~1!5s2~]2v i1]2v j] jwi

~0!1]kv j]k j
2 wi

~0!!, ~63!

Di j
E5s2d i j 2

1
2 ~^v iwj

~0!&1^v jwi
~0!& !2

t

2
@~^v i]

2wj
~0!&

1^v j]
2wi

~0!& !1^v iwj
~1!&1^v jwi

~1!&#, ~64!

which differ from the previous ones.
This result raises the question about the validity of

two sets of equations and hence of the expansions. In o
to answer to this question we firstly note that the two sets
be considered as a particular case of thegeneralizedequa-
tions

Oxtwi
~0!52v i , ~65!

Oxtwi
~1!5s2

„~p2q!]2v i1~p2q!]2v j] jwi
~0!

1p]kv j]k j
2 wi

~0!
… ~66!

Di j
E5s2d i j 2

1
2 ~^v iwj

~0!&1^v jwi
~0!& !2

t

2
@qs2~^v i]

2wj
~0!&

1^v j]
2wi

~0!& !1^v iwj
~1!&1^v jwi

~1!&# ~67!

obtained starting from the master equation

] tQ~x,t !52 ṽ i~x,t !] iQ~x,t !1] i j
2 @Di j ~x,t !Q~x,t !#,

~68!

where

ṽ i5v i1qs2t]2v i , ~69!

Di j 5s2S d i j 1
pt

2
~] iv j1] jv i ! D ~70!

and by applying the multiscale technique.
The role of the two free parametersp andq is of gener-

alizing the master equation~60! being our feeling that there
exists a family of different microscopic process specified
ṽ andDi j that correspond to the same macroscopic diffus
process specified byDi j

E .
The first set consisting of the equations~51!, ~53!, and

~55! corresponds toq51/2 andp52, whereas the secon
one consisting of the equations~62!, ~63!, and ~64! corre-
sponds toq50 andp51. Now a closer analysis of the dif
fusion coefficients~70! reveals that it may take negative va
ues, introducing unphysical singularities into the proble
e
er
n

y
e

.

Moreover the multiscale technique requires aDi j
E definite

positive. This means that Eq.~68! does not constitute a genu
ine Markovian process with a well defined correspond
Langevin equation driven by a Gaussian white noise. In g
eral this expansion do not converge uniformly inx and the
range of validity is restricted tot!1, t/s2!1 ~in dimen-
sionless unit!, thus they are asymptotic estimate fort→0. In
this range of equations validity we do not have anya priori
arguments for choosing one of the two sets of equations
it is for this reason that we expect to obtain the same valu
the eddy diffusivity tensor using the two sets. This is inde
the case for the parallel shear flows~see Appendix B!. This
result can be thought as a first indication of the equivale
~with respect to the value of the diffusivity! of the general-
izedequations.

In general we do not expect that all possible choices oq
andp give the sameDi j

E but we can think to select the clas
of equivalent process by applying thegeneralizedequations
to the parallel shear flow and imposingDi j

E equal to the
known expression~38! independent on bothq and p. This
calculation is reported in Appendix B and it ends up in t
following condition:

p52q11. ~71!

All these considerations suggest that for shortt there ex-
ists a class of equivalent equations depending on the pa
eterp that lead to the same eddy diffusivity tensor.

If this is the case, among the all possible choices ofq and
p consistent with Eq.~71!, we can choose:p50 and q5
21/2. In this caseDi j 5s2d i j and Eq.~60! reduces to a truly
Markovian process with the associated Langevin equatio

d

dt
x5ṽ~x,t !1j~ t !, ~72!

wherej is a Gaussian white noise. This is the microsco
Markovian process that approximates the long time and la
space transport properties of a colored noise process
short noise correlation time. In other words, to study t
diffusion properties of Eqs.~1!–~2! for small t we can re-
place the original colored noise process with the process
scribed by Eq.~72!. This will give the correct diffusion co-
efficients up toO(t2).

We have checked numerically that for theAB flow the
eddy diffusivity tensor assumes the same value for the th
different choices of the parametersq and p consistent with
Eq. ~71!: p52 andq51/2, p51 andq50, p50 andq5
21/2. This gives us confidence in our conclusions.

V. FLOWS WITH CLOSED STREAMLINES

We apply now our analysis to two models for th
Rayleigh-Bénard steady convection: the first one consists
an horizontal extent of convection cells much larger than
height so that the flow can be considered quasi-tw
dimensional; the second one is the two-dimensionalAB flow
made of a structure periodically repeated in the space.
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‘A. A quasi-two-dimensional flow

We consider the flow discussed by Shraiman@7#. This is
described by the stream function

c~x,y!5
vL

pk
sinS pk

L
xD sinS p

L
yD ~73!

with v being the characteristic velocity,L the height of the
cell (yP@0,L#), andL/k thex-periodicity of the roll pattern.
The top and the bottom plates of the cell are assumed im
meable for the passive scalar so that the appropriate bo
ary conditions for the tracers density functionQ are
]yQuy50,L50. The streamlines of the flow are illustrated
Fig. 1. Using Fokker-Planck equation

] tQ52v•­Q1s2]2Q, ~74!

for large Pe´clet number Pe5vL/s2, k52 and t50 the
eddy diffusivity coefficientD11

E (0) has been calculated in@7#
and it is

D11
E ~0!5

s2

Ap
APe5AvLs2

p
. ~75!

According to the results of the previous section, the colo
noise case with smallt is described up to orderO(t2) by the
same Fokker-Planck equation provided the velocity field
renormalized as Eq.~69! with q521/2. Taking into account
that vx52]yc, vy5]xc, and using Eq.~73!, we have

]2c52~p/L !2~11k2!c.

Therefore up to orderO(t2) the diffusion is described by

c̃~x,y!5F11
s2t

2 S p

L D 2

~11k2!Gc~x,y!

5c~s2,t,k!c~x,y!. ~76!

Sincec does not depend onx and t, we can repeat the cal
culation of Shraiman and obtain under the same conditi
of Eq. ~75! the expression for the eddy diffusivity coefficie

FIG. 1. The streamlines for thequasi-two-dimensional flow~73!
with k52.
r-
d-

d

s

s

D11
E ~t!5

s2

Ap
Ac Pe5D11

E ~0!A11
5s2t

2 S p

L D 2

5D11
E ~0!F11

5s2t

4 S p

L D 2G1O~t2!. ~77!

We then conclude that, in this case, asmall t enhances the
diffusion coefficient.

The same result can be deduced from the multiscale e
tions ~58! and ~59!: in fact because of the structure of the
two equations it is not difficult to show that if we chang
only the module of the velocity field (ṽ5cv) and we know
the explicit form ofDi j

E5 f (v) as a function ofv we have

D̃ i j
E5 f (ṽ). For large Pe´clet number andt50 the function

f (v) is given by Eq.~75! from which Eq.~77! follows.

B. AB flow

The AB flow is given by the velocity field

v~x,y!5„B cos~y!,A cos~x!…. ~78!

For A5B51 the streamlines form a closed periodically r
peated structure made of four cells as shown in Fig. 2.
expect that the diffusive behavior of such a system is sim
to the previous case, in fact we know@13# that for small
Péclet number Pe the eddy diffusivity tensor is proportion
to APe like in the quasi-two-dimensional case.

In Fig. 3 the behavior of the quantityD5@DE(t)
2DE(0)#/@DE(0)t# versuss2 is shown. The correctionD has
been calculated by integrating numerically the equations~51!
and ~53! and evaluating the quantity

2
1

DE~0!
Fs2

2
^v1]2x̃1

~0!&1^v1b61&G5
DE~t!2DE~0!

DE~0!t
5D

~79!

for different values ofs2. The equations are solved by usin
a pseudospectral method@14# in the basic periodicity cell
with a grid mesh of 64364 points. Dealiasing has been o
tained by a proper circular truncation which ensures be
isotropy of numerical treatment.

It is evident that also in this case the numerical resu
follow a linear behavior with a positive angular coefficie

FIG. 2. The streamlines for the two-dimensionalAB flow ~78!
with A5B51.



re
la

th
a

ti

s
b
e

us
ua
h

tio
ve
e
te

ve
ch
ad
s

st
s
e

e
to

m
all-
ed
f the

e-
ise
o-
the
ddy-

la,
ry
the

ant.

the

o
d-

is

er

l
e

3932 PRE 59P. CASTIGLIONE AND A. CRISANTI
and so we can conclude that the introduction of the colo
noise leads to an enhancement of the diffusion. In particu
we can see that the numerical results follow very well
line D5s2/4. This is not surprising because we know th
for large Pe

DE~0!5D11
E ~0!5D22

E ~0!5C1APe5C2Av; ~80!

therefore using the same arguments of the previous sec
we can deduce that

DE~t!5DE~0!A11 1
2 s2t5DE~0!„11 1

4 s2t1O~t2!…,

~81!

in a very good agreement with the numerical results.

VI. SUMMARY AND CONCLUSIONS

In this paper we have studied the transport propertie
velocity fields whose small scales are parameterized
Gaussian colored noise. We analyzed, in particular, the
fects of a finite noise correlation timet on the diffusive
properties for large time and spatial scales. In this limit,
ing the multiscale technique, we derive the diffusion eq
tion ~25! and the associated effective diffusion tensor. T
latter is obtained, once the velocity fieldv is given, by the
solution of an auxiliary equation, see Eqs.~23! and ~26!, of
the same structure of the original Fokker-Planck equa
@15#. The former is, however, an exact result for the diffusi
regime valid for very long times, thus avoiding all finite tim
effects of the Fokker-Planck equation or the associa
Langevin equation~1!,~2!.

The auxiliary equation cannot be solved for a generic
locity field, nevertheless there are nontrivial flows for whi
the solution can be found. This is the case for the ste
parallel flow for which the effective diffusion coefficient i
an increasing function oft. To study in more details the
effects of a small noise correlation time for a genericv we
have performed a small-t expansion and evaluated the fir
correctionO(t) to the effective diffusion coefficient. This i
done by using two different approach. We find that to ord

FIG. 3. The ratioD as a function of thes2 for the two-
dimensionalAB flow with A5B51. The continuous line is the
prediction obtained by Eq.~81! while the points are the numerica
results obtained from Eq.~79!. All quantities here are assumed to b
dimensionless.
d
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e
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O(t) there exist a one-parameter family of flows with th
same diffusion properties. This invariance can be used
pick up the most convenient microscopic dynamics, fro
both analytical and numerical porpoises. We apply the sm
t results to two two–dimensional model flows with clos
streamlines. In both the cases we find an enhancement o
diffusion.

The enhancement of the diffusion for smallt has been
interpreted in@16# in terms of interference mechanism b
tween turbulent and molecular diffusion. The colored no
makes the diffusion particles forgotten of their previous p
sitions less rapidly than in the white-noise case, thus
Lagrangian correlation time increases and so does the e
diffusivity. The study of the problem fort not small is the
object of current work.
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APPENDIX A: MASTER EQUATION FOR COLORED
NOISE AND SMALL t

In this appendix we derive the master equation for
probability densityQ(x,t) in the limit of small t for the
process described by the Langevin equation~1! and ~2!. If
the random variables is a Gaussian white noise of zer
mean,Q(x,t) satisfies the Fokker-Planck equation. We a
dress here the case of a colored noise. Now the processx is
non-Markovian and no exact simple equation forQ is
known. Let us consider an Ornstein-Uhlenbeck processs,
that is a zero mean Gaussian process with correlations@c.f.r
Eq. ~2!#

Ci j ~ t,t8!5^si~ t !sj~ t8!&5
s2

t
d i j e

2~ ut2t8u!/t, ~A1!

where t is the correlation time. The probability density
given by

Q~x,t !5^d„x~ t !2x…&, ~A2!

wherex(t) is a solution of Eq.~1! for a given realization of
s and for a given initial condition. The average is taken ov
the noise realizations. Taking the time derivative of Eq.~A2!
and using Eq.~1! one gets

] tQ~x,t !52] i@v i~x,t !Q~x,t !#1] i^si~ t !d„x~ t !2x…&.
~A3!

Taking advantage of the Gaussian nature ofs the average in
Eq. ~A3! can be rewritten as
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] tQ~x,t !52] i@v i~x,t !Q~x,t !#1] i j
2 E

t0

t

dt8S s2

t D
3e2[ ~ t2t8!/t] K dxj~ t !

dsi~ t8!
d~x~ t !2x!L . ~A4!

Because of thed function a closed equation is possible on
if the functional derivative either does not involve the pr
cessx or depends on it solely at the ‘‘Markovian’’ end poin
t5t8. At this stage thus we cannot simplify the master eq
tion any further. In the limit of small correlation timet a
closed equation can be derived by performing the larg
used small-t expansion. If the noise is close to the whi
noise limit (t50) it is reasonable to expand the function
derivative about its Markovian value, i.e., the one obtain
for the d-correlated noise. The Taylor expansion
dxj (t)/dsi(t8) around the Markovian end pointt85t is

dxj~ t !

dsi~ t8!
5

dxj~ t !

dsi~ t8!
U t85t1

d

dt8

dxj~ t !

dsi~ t8!
U

t85t

~ t82t !1•••

5d i j 2] iv j~x,t !~ t82t !1•••. ~A5!

Inserting the expansion~A5! into Eq.~A4!, keeping only the
first terms int and neglecting the transients, i.e., lettingt0
expand to2`, we obtain after straightforward algebra th
small t master equation:

] tQ~x,t !52] i@v i~x,t !Q~x,t !#1] i j
2 @Di j ~x,t !Q~x,t !#,

~A6!

where

Di j ~x,t !5s2Fd i j 1
t

2
@] iv j~x,t !1] jv i~x,t !#G ~A7!

and use of incompressibility has been made.
We note that this expansion does not converge unifor

in x, and the diffusion coefficient~A7! may exhibit negative
values, thereby introducing unphysical singularities into
problem. In other words, Eqs.~A6! and ~A7! do not consti-
tute a truly Markovian process with well-defined correspon
ing Langevin equation driven by white noise. In gene
these equations are valid only fort!1 andt/s2!1 ~in di-
mensionless units!.

APPENDIX B: GENERALIZED FORMULAS
IN THE STEADY SHEAR FLOW CASE

The exact expression of the eddy diffusivity tensor fo
stationary bidimensional shear flow,

v5„v~y!,0…, ~B1!

with v(y) a periodic function iny can be deduced from Eq
~34! and reads
n.
-

ly

l
d

ly

e

-
l

D11
E 5s21

1

2pE dk
uv̂~k!u2

s2k2
1t

1

2pE dkuv̂~k!u2

1O~t2!; D12
E 50; D22

E 5s2. ~B2!

Applying the generalized formulas~65!, ~66!, and~67! to the
shear flow we want to obtain the expressions~B2!.

For the shear flow Eq.~65! reads

~] t1v]12s2]2!w1
~0!52v, ~B3!

~] t1v]12s2]2!w2
~0!50. ~B4!

Taking the Fourier transformv̂(k) of v(y) we obtain the
stationary solutionw2

(0)50 and

w1
~0!~y!52

1

2pE dk
v̂~k!

s2k2
eiky. ~B5!

Thus Eq.~66! becomes

~] t1v]12s2]2!w1
~1!5~p2q!s2]2

2v, ~B6!

~] t1v]12s2]2!w2
~1!50. ~B7!

The stationary solutions are

w1
~1!~y!52~p2q!v~y!; w2

~1!50. ~B8!

Using Eq.~67! the eddy diffusivity tensor is

D12
E 50, ~B9!

D22
E 5s2, ~B10!

D11
E 5s22

1

2
^vw1

~0!&2
t

2
~qs2^v]2

2w1
~0!&1^vw1

~1!& !1O~t2!

~B11!

and

D11
E 5s21

1

2pE dk
uv̂~k!u2

s2k2
1t~p22q!

1

2pE dkuv̂~k!u2

1O~t2!. ~B12!

A comparison between Eqs.~B12! and ~B2! shows that the
generalized equations lead to the exact expression of
eddy diffusivity tensor for a stationary shear flow if

p52q11.

The same condition is found if we consider a time-depend
shear flow.
@1# H.K. Moffatt, Rep. Prog. Phys.46, 621 ~1983!.
@2# G. Lacorata, R. Purini, A. Vulpiani, and E. Zambianchi, An

Geophys.~France! 14, 476 ~1995!.
@3# A. Bensoussan, J.-L. Lions, and G. Papanicolaou,Asymptotic
Analysis for Periodic Structures~North-Holland, Amsterdam,
1978!.



M

s.

r.

l

3934 PRE 59P. CASTIGLIONE AND A. CRISANTI
@4# D. Mc Laughlin, G.C. Papanicolaou, and O. Pironneau, SIA
~Soc. Ind. Appl. Math.! J. Appl. Math.45, 780 ~1985!.

@5# A. Majda and R. McLaughlin, Stud. Appl. Math.89, 245
~1993!.

@6# L. Biferale, A. Crisanti, M. Vergassola, and A. Vulpiani, Phy
Fluids 7, 2725~1995!.

@7# B.I. Shraiman, Phys. Rev. A36, 261 ~1987!.
@8# A. Griffa, K. Owens, L. Piterbarg, and B. Rozowskii, J. Ma

Res.53, 371 ~1995!.
@9# A. Colin de Verdière, J. Mar. Res.41, 375 ~1983!.

@10# W. Krauss and C.W. Bo¨ning, J. Mar. Res.45, 259 ~1987!.
@11# E. Zambianchi and A. Griffa, Ann. Ist. Univ. NavaleLXI , 75
~1994!.

@12# M. Avellaneda and A. Majda, Commun. Math. Phys.138, 339
~1991!.

@13# T.H. Solomon and J.P. Gollub, Phys. Rev. A38, 6280~1988!.
@14# D. Gottlieb and S.A. Orszag,Numerical Analysis of Spectra

Methods, SIAM, ~Philadelphia, Pennsylvania, 1977!
@15# H. Risken, The Fokker-Planck Equation~Springer-Verlag,

Berlin, 1996!.
@16# P. Castiglione and A. Mazzino, Europhys. Lett.43, 522

~1988!.


