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Dispersion of passive tracers in a velocity field with nong-correlated noise
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The diffusive properties in velocity fields whose small scales are parameterized b¥tcwrelated noise is
investigated using multiscale technique. The analytical expression of the eddy diffusivity tensor is found for a
two-dimensional2D) steady shear flow and it is an increasing function of the characteristic noise decorrelation
time 7. In order to study a generic flow, a small+ expansion is performed and the first correctd(rr) to
the effective diffusion coefficients is evaluated. This is done using two different approaches and it results that
at the orderr the problem with a colored noise is equivalent to &ieorrelated case provided by a renormal-
ization of the velocity fieldv—>v depending orr. Two examples of 2D closed-streamlines velocity field are
considered and in both the cases an enhancement of the diffusion is f@1%.3-651X99)04204-X]

PACS numbd(s): 47.52:+j

I. INTRODUCTION In Sec. V we study the case of two closed-streamlines
fields that mimics the transport in the RayleighrRed sys-
The problem of diffusion in a given velocity field has both tem: the quasi-two-dimensional flow studied by Shraiman in
theoretical and practical relevance in many different fields of 7] and theAB flow. In both the cases the presence of a small
science and engineering as, e.g., transport processes GArrelation time enhances the diffusion process.

chemical engineering and combustion studies The trac- Conclusions are reserved for the final Sec. VI.
ers transport, in particular the evolution of their concentra-

tion, plays an important role in many aspects of geophysics. Il. EFFECTIVE DIFFUSION EQUATION
For the oceanic flows, satellite data indicate that the mesos- FOR GAUSSIAN COLORED NOISE

cale features, like eddies and cold filaments, advect tempera- |\, . nsider large-scale and long-time dynamics of the

ture and nutrients over spaj[ial and temporal sqale; Iong%odel proposed i8] and already studied ifi2] for the
than those of the geostrophic turbulence. The diffusion eNfransport of a fluid particle in the upper mesoscale ocean:
hancement by a given velocity field has attracted a lot of

works in the last years. In particular the role of the velocity d
field properties has been largely investigated while the ef- gr X=v (XD +s(1), 1)
fects of small-scale parameterization are not understood.

In this paper we will focus on the effects of a finite noise where v is a d-dimensional incompressible velocity field
correlation time. This problem is relevant in studying the(v .y =0), for simplicity, periodic both in space and in time
transport in the ocean since in this system the noise termands is a Gaussian random variable of zero mean and cor-
comes from unresolved velocity scales which are correlategelation function
in time.

In Sec. I, by using the multiscale technique, we study the
diffusion properties of the model proposed in Rg] for
transport in the upper mesoscale ocean. The transport is de-
scribed by a Langevin equation with a Gaussian colored’he termwv(x,t) represents the part of the velocity field that
noise in time. one is able to resolve, i.e., the larger scale mean flow,

The aim is to understand whether a finite noise correlationwhereass(t) represents the part of the velocity field contain-
time 7 enhances or depresses the dispersion process inimg the subgridscale flow processes, e.g. the small-scale tur-
given velocity fieldv(x,t) with respect to thej-correlated  bulence. The plausibility of such a description is discussed in
case ¢=0). [9-11]. In the limit 7—0, resultinge™ "t/ r— s(t—t"),

Exploiting the scale separation in the dynamics we derive() reproduces the widely studiegtcorrelated case
using the multiscale techniques], an effective diffusive

equation for the macrodynamics, the calculation of the effec- (si()s(t"))=a?8;8(t—t"), ©))

tive diffusivity second-order tensor is reduced to the solution

of one auxiliary partial differential equatidd—6]. the diffusive properties of which we would like to compare
In Sec. lll we consider a shear flow, in this case the dif-with the r-correlated noise case.

fusion coefficient increases with The solution of the aux- To study the dispersion of tracers evolving according to

iliary equation is, in general, quite difficult, therefore, to in- Egs. (1) and (2) on large scales and long times we use the

vestigate the role of the finite in Sec. IV we perform a multiscale technique. This is a powerful mathematical

small-r expansion. An alternative method is presented in thenethod, also known as homogenization, for studying trans-

Appendix A. port processes on time and spatial scales much larger than

0'2 ,
(si(D)s(t"))y=— e =l )
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those of the velocity field. It has been already applied to Where the function® (™ depend on both fast and slow vari-
the s-correlated casg3] and it has been shown that the mo- ables. By inserting Eq$9) and(10) into the Fokker-Planck
tion on large time and spatial scales is diffusive and it isequation(8), equating terms of equal powersdrand choos-
described by an effective diffusion tensor which takes intoing the solutions that have the same periodicities as the ve-
account the effects of the advecting velocity on the bare diflocity field, we obtain a hierarchy of equations the first three

fusion coefficiento?. of which are
To apply this method to the case of Gaussian colored ©)
noise, we first write Eqs(1) and (2) into a Markovian pro- DO™=0, (1)
cess by enlarging the state space consides{tgas a vari-
able evolving according to the Langevin equation: DOW=—(v+9)- 3O, (12)
d 1 DOP=—(v+9)-OYV—-5:00, (13
& S=— ; s+w(t), (4)

where the operatdP is defined as

where now the nois&(t) is a white noise with correlation 1 o\ 2
functions D=9+ (v+9)- 0=~ S(s)—(; 9.2, (14
o 2
(Wi(t)wj(t’)>=2(—) §jo(t—t"). (5) In order to solve Eq(11) we make use of scale separation
T and we write the solutio®(® as the sum of two terms:

: . OO (X,T,s) dependi thesl iabl d
We have now a two-variable(s) Markovian process whose <~ A S) depending on theslow variables an

(0) i i i
associated Fokker-Planck equation can be easily obtaine& (>§,t,s) depen(_jmg on théast variables Here and in t_he
Indeed, introducing ollowing the {-) indicates the average over ti@st vari-

ables.
v+s Equation(11) then splits into the two equations
X w . [0 0 ~
v={ i w={ i V= _}S C A=l 1 DO =0, (15
T
(6) a\? 1
(—) OO+ = 9(s(O))=0. (16)
Egs.(1) and(4) become T T
One can show6] that the solutior®(® will relax to a con-
at Y=V(Y,t)+A-W(t). (7)  stant with respect to fast variables, so we can simply take
. o OO (x,t,X,T,9=(0)(X,T,9) (17
The associated Fokker-Planck equation is
, and write the solution of Eq.16) as
o 1
(9t®=(;) ﬂ§s®_(v+s)'0x®+;ﬂs'(56))r 8 (0OY=Q(X,T)P(s) (18)
where® =0 (x,s,t) denotes the probability density. whereP(s) is defined as
The doubling of the space dimension is the price to pay 521252
for having a Fokker-Planck equation. In Appendix A we dis- P(s)= € (19
cuss a different approach to the problem that does not double (27a?l7)9/?
the dimension of the space, but leads in general to a non-
Markovian master equation. with d the dimension of thex space.

We can now apply the multiscale technique. Following By using Eq.(18) we see that Eq(12) can be written as
[6] in addition to thefastvariablesx andt we introduce the
slow variables defined aX=ex and T=€’t wheree<1 is DO =f(x,t,9)-G(X,T) (20
the parameter controlling the separation between the small.
scales related to the velocity fietd and the large scale re- with
lated to the® variation. The two sets of variables are con-
sidered to be independent and so we have to make the sub-

stitution with solution

f(x,t,99=—(v+9P(s), G(X,T)=dQ(X,T) (21

d— O+ edy;  dp—>dt+ €27 C) OWM(x,t,X,T,9)=x(xt,5)-G(X,T). (22

The solution of the Fokker-Planck equati() is soughtas a  The vector fieldy is called the auxiliary field and it solves
perturbative series the auxiliary equation

Oxt,X,T,9=00+e0V+20@+..., (10 Dx=f. (23
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Finally by averaging Eq(13) over the fast variableg;- ), where the average is over the realizations of the white noise

and integrating oves, (-), we obtain w, x(t;x’,t") and s(t;s’,t’) are the solutions of Eqgl),
(4), and (28) with initial condition x’=x(t";x",t") and ¢’
A((v+90M)y=—o(0@0)=—g:Q(X,T), (24 =s(t';5,t"). For the velocity field28) the solutions of Egs.

(1) and(4) can be written as
which, using Eq(22), becomes

t t
T T x(t)y=x"+ ] dt t +Jdtst,
51Q= (v +5)x) 7% xQ=Df % Q. (@9 0=+ [ G [ dus)
This is the diffusion equation describing the large-scale dy- —r Jt
namics, i.e., the dynamics in the slow variables. The effec- y({O=y'+ t,dtlsZ(tl)’ (33

tive eddy diffusivity tensorDﬁ is given by

! t — — T
DE=—{(+soxp+{wspxyl.  (26) s(t)=se” +Jt/dtlw“1)e R

From the auxiliary equatio(23) one can show that thig; is ~ Inserting Egs.(32) and (33) into Eq. (31), after some
positive definite. Indeed, if we consider thth and thejth  Straightforward algebra one obtains

component of Eq(23), multiply by x; andx;, respectively, 1 .

sum the two t'erms and average the result over the periodici- Di: o2+ _f dk|z3(k)|2IimJ' dt’

ties,(-), and integrate over the random variablere end up 7T

with )
, xexp{ — o?k[(t—t") = 7(1—e [/}
g
Dfi= <;> f d%sag(xi) ds(x;) P(s)=0. (27) (34)

) o ~and
This result can be extended to non-periodic velocity field
following the prescriptions ifi12]. DE=0, D5=d? (35)

ll. A SOLVABLE CASE: THE STATIONARY SHEAR whereo (k) is the Fourier transform af(y). The same result

FLOW can be obtained directly from the definition

The resolution of the auxiliary field equation for a generic e
v is not an easy task. Therefore not trivial solvable cases are Djj= I|m 2t<[X (O =) 10X = (X)) (36)
useful to understand the properties of the solution. In particu-
lar the auxiliary equation can be resolved for parallel flows
which in two dimensions have the form

v(x,y)=((y),0), (29 exf o’k?r(1-e [("1/)]=1 (37)

'using Eq.(33). Now, because of the inequality

where v(y) is an arbitrary function ofy. Note that these °"€ Nas

flows automatically satisfWw -v=0. To evaluate the effec- 1 . t po
tive diffusion coefficients we first write the solution of the ~ Df(7)=¢?+ > dk|ov(k)|?lim J dt’e o kt=tH
a

auxiliary equation as t—wd 0
Iv(k>|2 DE
xi(x,t,,x',t',¢')=— | dt’dx’'ds'G(x,t,s,x',t’,s') dk D1,(0). (38
X@ix)+s)P(s") (29 Therefore for a stationary parallel flow a colored noise pro-

duces an enhancement of the dispersion. Similar equations

whereg is the Green function of the operatbr can be obtained for a time-dependent shear flow. However,

) 1 o in this case it is not simple to see the sign of the correction.
DG=o(x=x)8(t—t)o(s~s). 30 The results will be reported elsewhere. It is trivial to show
Inserting Eq.(29) into Eq. (26) we have that the results in this section hold also for @ Shear flow:

v(x,y,2)=(v(y,2),0,0). (39
DFJ:—f dtdxdsdt’dx’ds'[v;(x)+s;]1G(x,t,5x’,t’,s")
, IV. EDDY DIFFUSIVITY FOR SHORT NOISE
X[vj(X")+s;]P(s"). (31 CORRELATION TIME

Now we note that the Green functighcan be written as By using multiscale technique, the calculation of the eddy
diffusivities has been reduced to the solution of the auxiliary
G={8(x—x(t;x",t"))8(s—s(t;8',t"))w, (32 equation(23). Numerical methods are generally needed to
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solve it but to do so we have to work in alZlimensional
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2 2
=(bgjait+byas+bgiajar+byay

space. In general, this is not feasible, so, to get more insight

the generiw case we study the smatlcase and expand the
auxiliary field y in a power series of. A typical time of the
physical system that can be compared to is 7

=\{v®)12 i.e., the average time it takes a particle to travelthe field x|

a characterlsuc length.
Taking

:\/;Si:

i

Xi= (%, a,t) 72

2m2k=0

we obtain the following expression for the eddy diffusivity
tensor:

> 2 (vix; ™)+ (o)) + Ak D2

T2 2770'2 k
X((aix( )+ (i xM)) (40
and for the auxiliary equation
Ek [Tklz(at+v L)+ Ak=1)12] . d— Ak=2)/2]
X (@(@) — 022 )XW= —| v+ Gi ) o (a?i20%)
T
(41)

From the expressiod0) we see that in order to determine

the correction of orderr to Dﬁ, we need the quantities

X @ ) ™, (), @, and (x*). The

fields Xi(k) obey the equations
Ouxi”'=0, (42
O x'V=a a0+ aje (20", (43)
Oux(?= (1t v- BIX"+ e GV +vie” (27,
(44)
Oux(V=(d+v- )" P+ a dx(" Y, h=3,
(45)
where the operata®,, is defined as
0,=d, (a)— % (46)

The solutions of Eqs42), (43), and(44) can be written in
the form

~ (292
0= e, @

a/20')

M= (ajar+aya,+ag)e (48)

+ byt by ) e (47257, (49)

The coefficientsy;; andb;; are functions ok andt while for
(3)

(x¥)=c(x,t)e" (@27, (50)
By inserting expressiongt7), (48), and(49) into Egs.(42),
(43), (44), and(45) We can determine the coefficierag for
i=1,2 andb;; fori= ,5 andhen by integrating oves

the equatlons fop((z), X(g), and x{*, respectively, we fi-
nally have the equat|ons for the remaining functions

;(i(O)l ag;i, andbg;,

Oaxi”=—vi, (51)
Ox@a3i=0, (52
Oxibgi=§ 07070+ 0%v;9,x\° 1+ 20200 md Xt ®
(53
where
Oy=di+v-d— 029° (54)

The Dﬁ coefficients at the first order in read
o 5 __ <UIXJ >+<UJX|0)>)__[_(<U a2)(] >

+(0;°X”)) + (vibej) +(vjbei) |- (59

We note that instead of thed2dimensional equatio(26) we
have now a system of twd-dimensional equation&1) and
(53) without the random variable Of course this is numeri-
cally much more convenient.

We note that by defining new velocity and auxiliary fields
as

~ 0'27'

v=v——02v,

5 (56)

X=X+ (b + a?x'?) (57)
and negletting terms dd(7%) equationg51), (53), and(55)
can be written as

(d+vd— 023 xi=0; (59)

and

DEZU ij 2(<UIXJ>+<UJXI>) (59
formally equivalent to the Gaussian white noise result.

In Appendix A we use a different method to obtain the
expression of the eddy diffusivity tensor for smallup to
O(7?). By starting from the Master equation associated with
the Langevin equatiofl) and using a smalt expansion we

derive the Fokker-Planck equation
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O (X,1)= =3 [vi(x,)O(X,1) ]+ 35 [ Dy (x,1)O(x,1)]
(60)

with
Dy (x.1) =0 5ij+%[aivj(x,t)mjvi(x,t)] . (6D

Now, by applying multiscale technique to E@0) we end
up with the following equations:
Ox{”=—v;, (62

OV = 2%+ %0, 0W® + g agw®),  (63)

:
D =020 = 3 (o) (o)) = Z[(wiw,)

+(0;2W ) + (W) + (oWt ], (64)

which differ from the previous ones.
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Moreover the multiscale technique requiresDﬁ definite
positive. This means that E¢68) does not constitute a genu-
ine Markovian process with a well defined corresponding
Langevin equation driven by a Gaussian white noise. In gen-
eral this expansion do not converge uniformlyxirand the
range of validity is restricted ta<1, 7/0?<1 (in dimen-
sionless unjt, thus they are asymptotic estimate fer 0. In

this range of equations validity we do not have angriori
arguments for choosing one of the two sets of equations and
it is for this reason that we expect to obtain the same value of
the eddy diffusivity tensor using the two sets. This is indeed
the case for the parallel shear floveee Appendix B This
result can be thought as a first indication of the equivalence
(with respect to the value of the diffusivityf the general-
izedequations.

In general we do not expect that all possible choiceg of
andp give the samelDiEj but we can think to select the class
of equivalent process by applying tigeneralizedequations
to the parallel shear flow and imposir[giEj equal to the
known expressior{38) independent on botly and p. This

This result raises the question about the validity of thec@lculation is reported in Appendix B and it ends up in the
two sets of equations and hence of the expansions. In orddpllowing condition:
to answer to this question we firstly note that the two sets can

be considered as a particular case of ¢femeralizedequa-
tions

0¥ = —v;, (65)
0w H=0?((p—q)d2v;+ (p—q)d%v;0,w”
+ pakvjaijwi(())) (66)

r
Dfj =6 = 2((viw)”) + (0;wi*) = 5[0 (0w

(v PW(?)) + (0w V) + (oY) (67)
obtained starting from the master equation

HO(X,1) = —vi(x,1) O (x,t) + I5[ Dy (X, O(X,1)],

(68)

where
vi=v,+qolré?;, (69)
D;;=0? 5ij+p77(aivj+ajvi) (70)

and by applying the multiscale technique.
The role of the two free parametgpsandq is of gener-

alizing the master equatiai®0) being our feeling that there

p=2g+1. (7D

All these considerations suggest that for shothere ex-
ists a class of equivalent equations depending on the param-
eterp that lead to the same eddy diffusivity tensor.

If this is the case, among the all possible choiceq ahd
p consistent with Eq(71), we can choosep=0 andqg=
—1/2. In this caseD;; = 025”- and Eq.(60) reduces to a truly
Markovian process with the associated Langevin equation,

d ~
— X=v(x,t)+ &1),

T (72

where ¢ is a Gaussian white noise. This is the microscopic
Markovian process that approximates the long time and large
space transport properties of a colored noise process with
short noise correlation time. In other words, to study the
diffusion properties of Eqs(1)—(2) for small 7 we can re-
place the original colored noise process with the process de-
scribed by Eq(72). This will give the correct diffusion co-
efficients up toO(72).

We have checked numerically that for theéB flow the
eddy diffusivity tensor assumes the same value for the three
different choices of the parametegsand p consistent with
Eq. (7): p=2 andgq=1/2, p=1 andq=0, p=0 andqg=
—1/2. This gives us confidence in our conclusions.

exists a family of different microscopic process specified by

Y andD;; that correspond to the same macroscopic diffusive

process specified b .
The first set consisting of the equatioftl), (53), and

V. FLOWS WITH CLOSED STREAMLINES

We apply now our analysis to two models for the

(55) corresponds taj=1/2 andp=2, whereas the second Rayleigh-Ba@ard steady convection: the first one consists of

one consisting of the equatiorni62), (63), and (64) corre-

an horizontal extent of convection cells much larger than its

sponds tag=0 andp=1. Now a closer analysis of the dif- height so that the flow can be considered quasi-two-
fusion coefficientg70) reveals that it may take negative val- dimensional; the second one is the two-dimensidyilflow
ues, introducing unphysical singularities into the problem.made of a structure periodically repeated in the space.
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y/L

FIG. 1. The streamlines for ttguasitwo-dimensional flow(73)
with k=2.
‘A. A quasi-two-dimensional flow

We consider the flow discussed by Shrainj@h This is
described by the stream function

_ vL  [wk K 73
YY) = —sin T—X|sin -y (73
with v being the characteristic velocity, the height of the
cell (ye[0O,L]), andL/k the x-periodicity of the roll pattern.
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FIG. 2. The streamlines for the two-dimensioreB flow (78)
with A=B=1.

o2 5027 mw\?
DEl(T)=ﬁ\/c Pe=D%,(0)\/1+ 5 (E)
5027 7\ ?

4 \L

We then conclude that, in this casesmall 7 enhances the
diffusion coefficient.
The same result can be deduced from the multiscale equa-

=D5(0)[1+ +0(72). (77

The top and the bottom plates of the cell are assumed impetions (58) and (59): in fact because of the structure of these
meable for the passive scalar so that the appropriate boungwo equations it is not difficult to show that if we change

ary conditions for the tracers density functio® are

ay®|y:0',_=0. The streamlines of the flow are illustrated in

Fig. 1. Using Fokker-Planck equation

90=—v-00 + 0250, (74)
for large Pelet number Pevl/o?, k=2 and =0 the
eddy diffusivity coefficienDE,(0) has been calculated fi]
and it is

2
o vLo
D%(0)= L Pe=

NE

(79

- .

According to the results of the previous section, the coIorec’:,

noise case with smaft is described up to ordéd(7?) by the

same Fokker-Planck equation provided the velocity field i

renormalized as Eq69) with g= —1/2. Taking into account
thatv,=—dy, vy=dyi, and using Eq(73), we have

Py=—(wlL)?(1+k?) .

Therefore up to orde®(7?) the diffusion is described by

2

1 2 e

W(Xy)=

H(X,Y)

=c(o?,7,K) p(X,y). (76)

S

only the module of the velocity fieldu=cv) and we know
the explicit form 0fDﬁ=f(v) as a function ofv we have

Dfj=f(v). For large Pelet number andr=0 the function
f(v) is given by Eq.(75) from which Eq.(77) follows.

B. AB flow
The AB flow is given by the velocity field

v(x,y)=(Bcogy),AcogXx)). (78

For A=B=1 the streamlines form a closed periodically re-
peated structure made of four cells as shown in Fig. 2. We
expect that the diffusive behavior of such a system is similar
o the previous case, in fact we kndw3] that for small
eclet number Pe the eddy diffusivity tensor is proportional
to \/Pe like in the quasi-two-dimensional case.

In Fig. 3 the behavior of the quantith =[DE(7)
—DF(0))/[DE(0)7] versuso? is shown. The correctiod has
been calculated by integrating numerically the equatiéis
and (53) and evaluating the quantity

1
DF(0)

a? - DE(7)—DE(0)
5 (19%,”) + (vabey) =T bro)r A
(79

for different values ob?. The equations are solved by using
a pseudospectral methdd4] in the basic periodicity cell
with a grid mesh of 6% 64 points. Dealiasing has been ob-
tained by a proper circular truncation which ensures better

Sincec does not depend ox andt, we can repeat the cal- isotropy of numerical treatment.
culation of Shraiman and obtain under the same conditions It is evident that also in this case the numerical results
of Eq. (75) the expression for the eddy diffusivity coefficient follow a linear behavior with a positive angular coefficient
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1 - - - O(7) there exist a one-parameter family of flows with the
same diffusion properties. This invariance can be used to
pick up the most convenient microscopic dynamics, from
01 ¢ E both analytical and numerical porpoises. We apply the small-
- 7 results to two two—dimensional model flows with closed
o streamlines. In both the cases we find an enhancement of the
< 0.01 | 3 diffusion.
7 The enhancement of the diffusion for smallhas been
A interpreted in[16] in terms of interference mechanism be-
0001 ¢ 7 3 tween turbulent and molecular diffusion. The colored noise
makes the diffusion particles forgotten of their previous po-
sitions less rapidly than in the white-noise case, thus the
001 0.01 o1 ] Lagrangian correlation time increases and so does the eddy-
> diffusivity. The study of the problem for not small is the
object of current work.

T

0.0001
0.

c

FIG. 3. The ratioA as a function of theo? for the two-
dimensionalAB flow with A=B=1. The continuous line is the
prediction obtained by Eq81) while the points are the numerical ACKNOWLEDGMENTS
results obtained from E@79). All quantities here are assumed to be
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noise leads to an enhancement of the diffusion. In particular

we can see that the numerical results follow very well theThiS work has been partially supported by the INRR¥o-
line A=o?/4. This is not surprising because we know thatgetto Ricerca Avanzata-TURB@nd by MURST(Program

for large Pe No. 970226543}

DE(0)=Df,(0)=D5,0)=C;\Pe=Cy\v;  (80) APPENDIX A: MASTER EQUATION FOR COLORED

. . . NOISE AND SMALL 7
therefore using the same arguments of the previous section

we can deduce that In this appendix we derive the master equation for the
probability density®(x,t) in the limit of small 7 for the
DE(7)=DE(0) 1+ 30?7=DE(0)(1+ 20?7+ 0O(7?)), process described by the Langevin equatibnand (2). If

(81) the random variables is a Gaussian white noise of zero
mean,® (x,t) satisfies the Fokker-Planck equation. We ad-

in a very good agreement with the numerical results. dress here the case of a colored noise. Now the process
non-Markovian and no exact simple equation fer is
VI. SUMMARY AND CONCLUSIONS known. Let us consider an Ornstein-Uhlenbeck procgss

_ _ . .thatis a zero mean Gaussian process with correlafiofis
In this paper we have studied the transport properties g (2)]

velocity fields whose small scales are parameterized by

Gaussian colored noise. We analyzed, in particular, the ef- )

fects of a finite noise correlation time on the diffusive " o (=t ir
properties for large time and spatial scales. In this limit, us- Cij (L) =(si(V)s;(1)) = T o€ e A
ing the multiscale technique, we derive the diffusion equa-

tion (25) and the associated effective diffusion tensor. Th
latter is obtained, once the velocity fieldis given, by the
solution of an auxiliary equation, see E¢23) and (26), of
the same structure of the original Fokker-Planck equation

[15]. The former is, however, an exact result for the diffusive O (x,t) =(S(x(t) —x)), (A2)
regime valid for very long times, thus avoiding all finite time

effects _of the _Fokker-PIanck equation or the associateq,herex(t) is a solution of Eq(1) for a given realization of
Langevin equatiori1),(2). s and for a given initial condition. The average is taken over

The auxiliary equation cannot be solved for a generic vethe nojse realizations. Taking the time derivative of &&R)
locity field, nevertheless there are nontrivial flows for which anq ysing Eq(1) one gets

the solution can be found. This is the case for the steady

parallel flow for which the effective diffusion coefficient is

an increasing function of. To study in more details the @06t =—d[LiXHOXH]+di(si(t) S(X(t) —X)).
effects of a small noise correlation time for a genarigve (A3)
have performed a smaH-expansion and evaluated the first

correctionO( 7) to the effective diffusion coefficient. This is Taking advantage of the Gaussian nature tife average in
done by using two different approach. We find that to orderEq. (A3) can be rewritten as

Svhere 7 is the correlation time. The probability density is
given by
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t 2 o 2
3000 =~ 3[0,x 00001+ [ ot | Z DE:#+£%fddM:l+¢£%fdMﬂmF
0 o
Xe—[(t—t’)/r]<;XjTit,))a(X(t)_x)>. (Ad) +0(r%); D5=0; D5,=02 (B2)
Si

Applying the generalized formuld$5), (66), and(67) to the

Because of the function a closed equation is possible only shear flow we want to obtain the expressi¢Bg).
if the functional derivative either does not involve the pro-  For the shear flow Eq65) reads
cessx or depends on it solely at the “Markovian” end point

. . . 292\, (0) —
t=t’. At this stage thus we cannot simplify the master equa- (d+vay—o?P)wy=—v, (B3)
tion any further. In the limit of small correlation time a 220 (0)
closed equation can be derived by performing the largely (d+vdy—a?dP)wy’ =0, (B4)

used smalkr expansion. If the noise is close to the white R

noise limit (r=0) it is reasonable to expand the functional Taking the Fourier transforna (k) of v(y) we obtain the
derivative about its Markovian value, i.e., the one obtainedstationary solutiorw’”)=0 and

for the &-correlated noise. The Taylor expansion of

ox;j(t)/ 8s(t") around the Markovian end poibt=t is 1 o(k)
Py)=—5—=| dk——e (BS)
w(Y)=—5— 22
dsi(t') as(t)| T dt! as(t) vt Thus Eq.(66) becomes
=8 —dv;(Xt)(t' —t)+---. (A5) (d+va,— a?P)WH =(p—q)o?dsv, (B6)
Inserting the expansiofA5) into Eq.(A4), keeping only the (at+v61—02(92)w(21)=0. (B7)

first terms in7T and neglecting the transients, i.e., lettiyg
expand to—o, we obtain after straightforward algebra the 1o stationary solutions are
small 7 master equation:

(D) — — (e R
20,0 == Ao (DO (X 1]+ [Py (DO (XD, W) ==(pmauly)s wor=0. (B
(AB)  Using Eq.(67) the eddy diffusivity tensor is

where
DL=0, (B9)

Dij(X,t):o'z 5ij+%[&ivj(x,t)+<9jvi(x,t)] (A?) DEZZO_Z' (B].O)

and use of incompressibility has been made. e ) 1 on_ T 2 2 (0 " )

We note that this expansion does not converge uniformlyP;=0°— 5 (vWy") = 5 (qo*(vdow; ™) +{owy ) + O(7)
in X, and the diffusion coefficientA7) may exhibit negative

, . ) . O (B11)

values, thereby introducing unphysical singularities into the
problem. In other words, Eq$A6) and (A7) do not consti-  gnd
tute a truly Markovian process with well-defined correspond-
ing Langevin equation driven by white noise. In general 1 |o(K)|2 1 A
these equations are valid only forc1 and7/o?<1 (in di- DE=0%+ —J dk—+r(p—2q)—f dklv(k)|?
mensionless unijs 2m o?k? 2m

+0(7?). (B12)
APPENDIX B: GENERALIZED FORMULAS

IN ' THE STEADY SHEAR FLOW CASE A comparison between Eq&B12) and (B2) shows that the

The exact expression of the eddy diffusivity tensor for ggeneralized equations lead to the exact expression of the
stationary bidimensional shear flow eddy diffusivity tensor for a stationary shear flow if

v=(v(y),0), (B1) p=2q+1.
with v (y) a periodic function iny can be deduced from Eq. The same condition is found if we consider a time-dependent
(34) and reads shear flow.
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